Sense and antisense transcription are associated with distinct chromatin architectures across genes

نویسندگان

  • Struan C. Murray
  • Simon Haenni
  • Françoise S. Howe
  • Harry Fischl
  • Karolina Chocian
  • Anitha Nair
  • Jane Mellor
چکیده

Genes from yeast to mammals are frequently subject to non-coding transcription of their antisense strand; however the genome-wide role for antisense transcription remains elusive. As transcription influences chromatin structure, we took a genome-wide approach to assess which chromatin features are associated with nascent antisense transcription, and contrast these with features associated with nascent sense transcription. We describe a distinct chromatin architecture at the promoter and gene body specifically associated with antisense transcription, marked by reduced H2B ubiquitination, H3K36 and H3K79 trimethylation and increased levels of H3 acetylation, chromatin remodelling enzymes, histone chaperones and histone turnover. The difference in sense transcription between genes with high or low levels of antisense transcription is slight; thus the antisense transcription-associated chromatin state is not simply analogous to a repressed state. Using mutants in which the level of antisense transcription is reduced at GAL1, or altered genome-wide, we show that non-coding transcription is associated with high H3 acetylation and H3 levels across the gene, while reducing H3K36me3. Set1 is required for these antisense transcription-associated chromatin changes in the gene body. We propose that nascent antisense and sense transcription have fundamentally distinct relationships with chromatin, and that both should be considered canonical features of eukaryotic genes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antisense transcription‐dependent chromatin signature modulates sense transcript dynamics

Antisense transcription is widespread in genomes. Despite large differences in gene size and architecture, we find that yeast and human genes share a unique, antisense transcription-associated chromatin signature. We asked whether this signature is related to a biological function for antisense transcription. Using quantitative RNA-FISH, we observed changes in sense transcript distributions in ...

متن کامل

Antisense transcription-dependent chromatin signature modulates sense transcription and transcript dynamics

Antisense transcription is widespread in genomes. Despite large differences in gene size and architecture, we find that yeast and human genes share a unique, antisense transcription-associated chromatin signature. We asked whether this signature is related to a biological function for antisense transcription. Using quantitative RNAFISH, we observed changes in sense transcript distributions in n...

متن کامل

Selective suppression of antisense transcription by Set2-mediated H3K36 methylation

Maintenance of a regular chromatin structure over the coding regions of genes occurs co-transcriptionally via the 'chromatin resetting' pathway. One of the central players in this pathway is the histone methyltransferase Set2. Here we show that the loss of Set2 in yeast, Saccharomyces cerevisiae, results in transcription initiation of antisense RNAs embedded within body of protein-coding genes....

متن کامل

Linear Decay of Retrotransposon Antisense Bias across Genes Is Contingent upon Tissue Specificity

Retrotransposons comprise approximately half of the human genome and contribute to chromatin structure, regulatory motifs, and protein-coding sequences. Since retrotransposon insertions can disrupt functional genetic elements as well as introduce new sequence motifs to a region, they have the potential to affect the function of genes that harbour insertions as well as those nearby. Partly as a ...

متن کامل

Bidirectional terminators in Saccharomyces cerevisiae prevent cryptic transcription from invading neighboring genes

Transcription can be quite disruptive for chromatin so cells have evolved mechanisms to preserve chromatin integrity during transcription, thereby preventing the emergence of cryptic transcripts from spurious promoter sequences. How these transcripts are regulated and processed remains poorly characterized. Notably, very little is known about the termination of cryptic transcripts. Here, we use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2015